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Abstract— The treemap is one of the most popular methods for visualizing hierarchical data. When a treemap contains a large
number of items, inspecting or comparing a few selected items in a greater level of detail becomes very challenging. In this paper, we
present a seamless multi-focus and context technique, called Balloon Focus, that allows the user to smoothly enlarge multiple treemap
items served as the foci, while maintaining a stable treemap layout as the context. Our method has several desirable features. First,
this method is quite general and can be used with different treemap layout algorithms. Second, as the foci are enlarged, the relative
positions among all items are preserved. Third, the foci are placed in a way that the remaining space is evenly distributed back to
the non-focus treemap items. When Balloon Focus enlarges the focus items to a maximum degree, the above features ensure that
the treemap will maintain a consistent appearance and avoid any abrupt layout changes. In our algorithm, a DAG (Directed Acyclic
Graph) is used to maintain the positional constraints, and an elastic model is employed to govern the placement of the treemap items.
We demonstrate a treemap visualization system that integrates data query, manual focus selection, and our novel multi-focus+context
technique, Balloon Focus, together. A user study was conducted. Results show that with Balloon Focus, users can better perform the
tasks of comparing the values and the distribution of the foci.

Index Terms—Treemap, focus+context, multi-focus, fisheye, magnification, visualizing query results, multi-scale viewing.

1 INTRODUCTION

The treemap is one of the most popular methods for visualizing hi-
erarchical data. By dividing the display area into rectangular areas
recursively according to the hierarchical structure and a user-selected
data attribute, treemaps can effectively display the overall hierarchy as
well as the detailed data values.

When the treemap is used to visualize very large scale data sets [7,
17], being able to visualize user selected data items, e.g. query results,
becomes crucial. This capability allows viewers to focus on only a
subset of items in which they are most interested. To achieve this goal,
the main issue to address is how to highlight the selected items with
details while displaying the contextual information.

There exist several options to display user selected focus items. One
is to display the selected data only, either as a list of entries in a sepa-
rate view, or by constructing a new treemap containing only the focus
items, and their ancestors and descendants. These methods cannot ef-
fectively display the global context around the selected items such as
their positions in the original treemap or their relations to the non-
selected items. The key drawback is that the new view of the data may
look very different from the original treemap, which forces the viewers
to put extra efforts to identify and link the two views.

Another category of methods utilizes focus+context techniques to
highlight the selected items within the main treemap view to preserve
the context. An example is presented in [1], where two focus+context
techniques are provided. The cue-based technique highlights the foci
with bright colors and suppresses the non-focus items with muted col-
ors. The zoomable interface can display more details in the user-
selected sub-regions, which may contain some of the foci.

Neither cue-based techniques nor zoomable interfaces are sufficient
in the general cases when there are multiple foci distributed in a large
hierarchy. Color highlighting is effective only if the focus items are
large enough to be clearly seen, but offers little help when the foci are
too small. However, it is very common for a typical treemap to contain
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many very small items, considering the trend of using treemaps to
visualize large hierarchies such as disk file systems [7], worldwide
network traffic and social cyberspace data [17]. Zoomable interfaces
are designed mainly for navigating in a large hierarchical view of data
with a single focus or a few very closely clustered foci. However,
since multiple foci can scatter across the entire treemap, zooming in
one sub-region will lose the information in other regions. Therefore,
it is not suitable for general applications with multiple foci such as
visualizing query results.

It is highly desirable to have a seamless focus+context method,
which can enlarge the foci while still keeping a similar global view.
A typical example is the fisheye view, which provides a good balance
between the local detail at the focus of the viewer’s attention and the
global context [8]. The advantage of this type of technique is that
tasks such as comparing the contents among the foci, and observing
the distribution of foci in the treemap, become much easier. The cost
of tracking objects that undergo transformations when the foci are en-
larged is also reduced.

To the best of our knowledge, no previous work has tackled
the problem of developing seamless focus+context techniques for
treemaps with multiple foci. An ideal multi-focus focus+context tech-
nique for the treemap needs to have several unique features, as dis-
cussed below, which cannot be easily handled by the existing fo-
cus+context techniques designed for other data types such as graphs
or 2D maps [20, 21].

The specific desired features for treemaps include preserving the
items’ rectangular shape, being independent of the underlying treemap
layout algorithms, and maintaining the same relative positions among
the treemap items after the focus items are enlarged. In addition, the
focus items should be made as large as the user desires, while the
resulting treemap still has a stable and consistent appearance so that
the user can easily track individual items. Detailed discussions on
these features are provided in Section 3.1.

In this paper, we present Balloon Focus, a seamless focus+context
technique for multi-focus treemaps that has the desired features afore-
mentioned. To preserve the shapes and relative positions among the
treemap items, a DAG (Directed Acyclic Graph) is created to repre-
sent the positional dependency constraints.

With the dependency graph, an elastic model is devised to govern
the placement of treemap items when the foci are enlarged. We cate-
gorize the edges of the graph into two groups: solid edges, represent-
ing the focus items since the size of a focus is known given the zoom
factor, and elastic edges, representing the size of the non-focus items
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computed based on where the focus items are placed. Elastic edges
are similar to the spring coils in that they are compressible and the
energy in the system is determined by the lengths of the springs. we
build a linear system based on the forces of the spring coils to solve
the positions of all treemap items.

We created a treemap visualization system that integrates data
query, manual focus selection, and our novel Balloon Focus technique
together. A case study on visualizing NBA statistics data using our
system is provided in the paper. In addition, a user study was con-
ducted, in which 12 subjects were asked to perform various visual
analysis tasks. The results show that Balloon Focus can help the view-
ers improve accuracy and reduce the time required to perform the anal-
ysis.

The rest of this paper is organized as follows: In Section 2, we
briefly review the related work on the focus+context techniques. In
Section 3, we provide an in-depth analysis of the problem and require-
ments of multi-focus seamless focus+context techniques for treemaps.
In Section 4, we describe our Balloon Focus algorithm in detail. In
Section 5, we present a case study to demonstrate the usefulness of
Balloon Focus. Our user study is described in Section 6. Finally, we
summarize our work in Section 7.

2 RELATED WORK

2.1 Focus+Context

Focus+context techniques have been used for various information vi-
sualization applications. For example, it has been shown that fo-
cus+context techniques can be used to assist visualization of trees [15,
18], graphs [20, 9], line graphs [14], maps [4], and tables [24].

Cockburn et al. [6] categorized focus+context approaches into four
groups: spatial separation, typified by overview+detail interfaces;
temporal separation, typified by zoomable interfaces; seamless fo-
cus+context, typified by fisheye views; and cue-based techniques
which selectively highlight or suppress items within the information
space.

Seamless focus+context Among the four categories, the seam-
less focus+context technique, typified by fisheye views, is a widely
studied topic. Sometimes, the term focus+context is interchangeable
with many other terms in that group, such as fisheye [8, 20], detail-
in-context [11], nonlinear magnification transformation [13] or distor-
tion [16], multi-scale [4] and others. The techniques can be further
categorized into single-focus or multi-focus techniques.

Single-Focus Fisheye Single-focus fisheyes can help people
navigate or browse effectively. They are often compared with another
effective navigation method, pan&zoom, for various applications, as
described in [19, 23].

Multi-Focus Fisheye Because of its usefulness, multi-focus tech-
niques are a popular topic for the focus+context research. Works re-
lated to multi-focus that use image space approaches were proposed
by Keahey [13, 11, 12], Carpendale [4, 5], and so on. In the area of
graph drawing, Sarkar proposed the well known graphical fisheye [20]
and the Rubber Sheet [21]. For radial space-filling hierarchy visual-
izations, InterRing [28] and Sunburst [25] include multi-focus tech-
niques as an important feature. Schaffer et al. [22] and Toyoda et al.
[26] studied multi-focus in the context of nested networks.

2.2 Focus+Context on Treemaps

Existing treemap systems such as the one described in [1] have
adopted zoomable interfaces and cue-based techniques.

For seamless focus+context, Shi et al. [23] proposed a distortion al-
gorithm by increasing the size of a node of interest while shrinking its
neighbors. Because their work was focused on browsing in a treemap,
it is not straightforward to extend their algorithm to multi-focus ap-
plications. Keahey [12] used a treemap as an example to show how
to compound zooming with a graphical fisheye. In that method, the
treemap is essentially treated as an image.

Comparing with the previous work, our method is focused on of-
fering several desired features of seamless focus+context on treemaps.

To the best of our knowledge, our work is the first to tackle the multi-
focus problem for treemaps. In addition, our method can be applied to
any other rectangular space filling visualization method.

3 PROBLEM ANALYSIS

In this section, we analyze and identify the desired features for seam-
less focus+context techniques applied to treemaps. These features are
used as the principles to guide the design of our algorithm.

3.1 Desired Features

Preserve the treemap’s most prominent property. The most promi-
nent property of the treemap is that the entire space is filled with rect-
angular leaf items and optional hierarchy-highlighting borders. It is
important to preserve this property since space filling makes the best
use of the available screen area to display data, and rectangles make
area comparisons easier. In addition, some of the techniques devel-
oped previously were based on the assumption that the items are rect-
angular, such as using bar charts [10] and images [2] to show the item
content. Therefore, preserving this property is critical to the general
usability of treemaps.

Apply the same scaling to all foci. There are two important reasons
to uniformly scale up all foci. First, because the foci are equally im-
portant, they are supposed to change in the same way. Failing to do so
may cause confusion since viewers may assume that the zoom factor
implies importance. Second, when performing analysis tasks, users
often need to compare the areas of foci. Uniform scaling will allow
viewers to get the same comparison result as in the original treemap.

Be layout-algorithm-independent. Different treemap layouts are de-
signed for different purposes, and not a single existing layout has been
shown to be the best in all cases. For example, the squarified treemap
is to optimize visibility, and the ordered treemap is to preserve the or-
der between sibling items. In addition, with the growing popularity
of treemaps, new layout algorithms may as well be proposed in the
future to meet new requirements. To maximize the usability, a layout-
algorithm-independent focus+context algorithm is highly desired.

Preserve positional dependency between items. For the purpose of
treemap stability and visual consistency, it is important to preserve
the relative positions, or called positional dependency, between the
treemap items. For example, if item A is originally on the upper left
side of item B, after enlarging the foci, item A should still be on the up-
per left side of item B. One straightforward way to scale up the focus
items is to change their size attributes and rerun the layout algorithm,
similar to the method in [27]. However, doing so will cause rapid and
abrupt layout changes for most of the existing layout algorithms when
the zoom factor is being adjusted interactively. These layout changes
will lead to flickering, which will draw attention away from other as-
pects of the visualization, as have been pointed out by Bederson et al.
in [3].

Maximize Foci’s Possible Zoom Factor. A larger zoom factor allows
viewers to see more details of the foci in the visualization and thus
help visual analysis tasks. In addition, it allows viewers to select more
foci and still see all foci clearly. It is specially desirable for visualizing
large-scale data, where the items can be very small.

Scale down non-focus items as even as possible. As the foci are
scaled up, the non-focus items need to be compressed. Although the
non-focus items are not as important as the focus items, it is desired
that the scaling factors among the non-focus items be as uniform as
possible so as to maintain the treemap’s visual consistency.

3.2 Problem Statement

Figure 1 illustrates the basic idea of the desired effects for seam-
less multi-focus+context treemaps. The treemap is a one-level strip
treemap with 37 leaf items. Four foci in color are selected and scaled
up. The example demonstrates the features mentioned above. We can
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(a) (b) (c) (d)

Fig. 1. Desired effects of the seamless focus+context technique on
treemaps. (a) the original treemap. (b) foci are selected and colored.
(c) foci are enlarged slightly. (d) the state when the foci are maximized.

observe that the items’ rectangular shape is preserved, the positional
dependencies are preserved, foci are uniformly scaled up, and non-
focus items are uniformly scaled down.

In terms of maximizing the zoom factor, we can see that the width
of item 15 in Figure 1(d) is as wide as the width of the entire treemap; it
is impossible to have a larger zoom factor along the horizontal dimen-
sion, so clearly the factor is maximized. If the orthogonal stretching
technique in the Rubber Sheet [21] is used, the foci in Figure 1(b) can-
not be enlarged along the horizontal dimension. This is because the
horizontal projection of the foci completely covers the x-axis.

Here is the statement of our problem: Given a treemap, T Moriginal ,
with multiple selected focus items in different levels of the hierarchy,
the focus+context algorithm should transform the T Moriginal into a
new treemap, T Mtrans f ormed , in which all focus items are enlarged by
the same zoom factor R. The achievable zoom factor should be as large
as possible. The focus items’ relative positions should be preserved.
Furthermore, the non-focus items should be scaled down as evenly as
possible among themselves.

4 APPROACH

In this section, we describe the multi-focus+context algorithm for
treemaps. Section 4.1 describes how to capture the prominent posi-
tional dependency among the items in a treemap when the foci are
enlarged. Section 4.2 introduces the concept of using a graph to model
the positional dependency. Section 4.3 shows how to model the depen-
dency for a multi-level treemap. Section 4.4 describes an elastic model
used to determine the final positions of all treemap items. Finally in
Section 4.5, we briefly discuss the implementation issues. Throughout
this section, the example in Figure 2 is used to illustrate our algorithm.

4.1 Positional Dependency

The goal of the dependency model is to capture the positional depen-
dency constraints among the items in a treemap, so that the transforma-
tion algorithm can provide a consistent look between the original and
new treemaps, denoted as T Moriginal and T Mtrans f ormed . The more
smoothly the original treemap can be transformed to the new treemap,
the more easily the viewers can adapt to the new view.

Ideally, to provide the best layout consistency, the positional rela-
tions among all boundary edges should be preserved. For example,
in the treemap shown in Figure 2 (a), the total order of vertical edges
from left to right is: g ≺ c ≺ e ≺ h ≺ a ≺ f ≺ i ≺ b ≺ d. With the to-
tal orders of both vertical and horizontal edges preserved, the layouts
of T Moriginal and T Mtrans f ormed will be very similar and thus have a
consistent look. The maximum zoom factor allowed, however, is quite
limited with this total order constraint. As shown in Figure 2 (b), the
enlargement of the foci (item 1, 5, and 13) must be stopped when edges
a, f , and i, have the same x coordinate. Clearly preserving the total
order positional constraints restricts the maximum zoom factor for the
foci to a small value. To overcome this limitation, we relax the depen-
dency constraints, and propose a relatively loose dependency without
negatively affecting the layout consistency.

When we studied the relation between preserving the positional de-
pendency and the easiness for viewers to keep track of changes, we
found that the positional relations between a focus and its nearby items
play a much more important role than the positional relations between
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Fig. 2. One-level treemap example: (a) is the original treemap with three
selected foci. (b) shows the maximum enlargement of the chosen foci
based on the ideal positional dependency. (c) illustrates how the entire
treemap area is divided into regions based on the foci. (d), (e), and
(f) demonstrate how the foci are enlarged based on the region depen-
dency, showing the beginning of enlargement, maximum enlargement
with aspect ratios of foci kept the same, maximum possible enlarge-
ment, respectively. Numbers represent treemap items; lower case let-
ters represent edges; dashed lines represent focus lines; Ri represents
an enclosure.

two arbitrary items, especially those far from each other. This is be-
cause when the foci are enlarged, the viewers are more sensitive to
what happen to the foci and items in the foci’s neighborhood.

Based on this observation, we propose a region dependency to cap-
ture only the prominent positional dependency, which is between ev-
ery focus and the treemap items in its neighborhood. What we want
to guarantee is the dependency among the regions, called enclosures,
whose formal definition is given below. We define the following terms:

Focus edges. We define the focus edges of a focus item as its four
boundary edges.

Focus lines. We define the focus line for a focus edge as its linear
expansion in its both directions. The expansion stops when the line
reaches another focus item or the boundary of the parent of the focus.

Enclosures. We define an enclosure in the treemap as the area that
is enclosed by two vertical focus lines and two horizontal focus lines.
There are no other focus lines going through this area.

As depicted in Figure 2 (c), the entire treemap is divided into 13
visible enclosures by the focus lines of the selected foci (item 1, 5,
and 13): Obviously the foci themselves are enclosures, but there are
also ten more outside of the foci (labeled R1 through R10). When focus
lines overlap, such as the bottom line of R1 and the top line of R5, they
create invisible enclosures whose area is zero.

When enlarging the foci, instead of preserving the total order of
all item edges, we preserve the region dependency with respect to the
enclosures. As shown in Figure 2(d), (e), and (f), after the foci are en-
larged, each treemap item edge strictly stays in its original enclosure;
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each pair of adjacent enclosures strictly keeps their positional relation.
However, when observing the map item edges, we can see that,

as shown in Figure 2 (d), the order between some edges is not pre-
served. For example, compared to Figure 2 (a), edge a changes its
position from the left side of edge f and i to their right. Even with
those changes, still, from the viewer’s perspective, the relative posi-
tions among all treemap items are not changed much; the transformed
treemaps look consistent with the original one.

The main advantage of this region dependency is that it allows a
much larger zoom factor. Figure 2 (e) shows the maximum zoom fac-
tor when the aspect ratio of the foci is preserved, and (f) shows the
maximum possible zoom factor. The algorithm to enlarge foci will be
discussed in Section 4.4.

We define that the region dependency is maintained after the
treemap transformation if all the enclosures in T Moriginal are preserved
in T Mtrans f ormed , and no new enclosure is created in T Mtrans f ormed .
Note that we allow the size of the non-foci enclosures to reduce to
zero. The formal definition of a region dependency is as follows:

Representation of an enclosure. We define the representation of an
enclosure as a 4-tuple, <Vle f t ,Vright ,Htop,Hbottom >, consisting of the
four focus lines that bound the enclosure.

Enclosure set of a treemap. We define the enclosure set of a treemap
T M, EncSet(T M), to be the set of all enclosures in the treemap.

Region dependency. We define that the region dependency is
maintained between T Moriginal and T Mtrans f ormed if and only if
EncSet(T Moriginal) = EncSet(T Mtrans f ormed).

The region dependency implies an important property that the order
between two vertical or two horizontal focus lines is preserved if the
focus lines bound an enclosure together. This property guarantees the
prominent relative positions of the items to be preserved.

Although the region dependency only explicitly exerts constraints
to the focus lines/edges, the dependency implicitly restricts that the
non-focus edges stay in the same enclosure which they originally be-
long to, and all edges in an enclosure strictly keep the relative posi-
tions with one another. With these constraints, we can consider the
inside of an enclosure as texture. Once the enclosures’ new positions
are decided, the textures are mapped, and the transformed treemap is
created.

4.2 Dependency Graph

We introduce a directed graph, called dependency graph, to model
the region dependency. As shown in Figure 3 (a), a treemap has two
dependency graphs that model the horizontal and vertical edge depen-
dency separately. The nodes in the graph represent focus lines. For any
enclosure, there exists an edge in the graph that connects two nodes
representing the focus lines which bound this enclosure along the ver-
tical or horizontal direction. The edge represents the space between
the two focus lines, and the direction of the edge represents the order
of the two nodes. As a result of the partial dependency order, a DAG
(Directed Acyclic Graph) is created as the dependency graph.

Since an edge is identified by two nodes, if multiple enclosures in-
troduce the same edge, redundant edges are removed.

In the dependency graph shown in the bottom of Figure 3 (a), along
the horizontal dimension, vertical focus lines (V1 through V6) are rep-
resented as nodes. There are three edges connected to the node V4:
e(V2,V4),e(V4,V5), and e(V4,V6), which are introduced by the enclo-
sure R6 or R10, R7, and the focus item 13, respectively. Note that
e(V2,V3) is introduced by an invisible enclosure.

Figure 3 (b) depicts the dependency graph for the treemap of
T Mtrans f ormed . The dependency graphs are topologically the same be-
fore and after transformation. Therefore, we say that the region depen-
dency is maintained.

4.3 Multi-level Treemaps

In a multi-level treemap, the focus items can be either internal nodes
or leaf nodes in the tree. To construct a dependency graph for a multi-
level treemap, the basic idea is to nest the local dependency graphs
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Fig. 3. Dependency graph example: (a) shows the dependency graph
for both dimensions in T Moriginal . (b) shows that the positional depen-
dencies are preserved in T Mtrans f ormed . The graph on the left side of
a treemap is for the dependency of horizontal edges, and the bottom
graph is for the dependency of vertical edges. Different colors are used
to distinguish the edges introduced by a focus or non-focus enclosure.

into a global dependency graph. Figure 4 shows an example of con-
structing a nested dependency graph for the horizontal dimension. In
this example, node 5 and 13 are not selected as foci but some of their
children are selected instead.
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Fig. 4. The Dependency graph for a multi-level treemap.

We consider that for an internal item T and its parent P, if the de-
scendants of T include any focus items, from P’s point of view, T is a
focus. So in P’s local dependency graph, which represents the depen-
dency among P’s children, T is represented by an edge in the graph.

To construct a dependency graph for a multi-level treemap, we first
calculate the local dependency graph for every internal item who has
focus descendants, then link the graphs to construct a global depen-
dency graph. When a lower level graph is linked in, an edge in the
upper level graph is replaced by the linked-in graph with two margin
edges. Margin edges are introduced to bridge two neighboring-level
graphs, representing the margins (or borders) between two neighbor-
ing levels in the treemap. The treemap margin is to differentiate levels
and help viewers understand the hierarchical structure. In the exam-
ple shown in Figure 4, e(V2,V5) and e(V4,V6) are replaced, and four
margin edges are added such as e(V2,V7) and e(V10,V5).

4.4 Elastic Model

As discussed in Section 3.1, two of the desired features for a seamless
multi-focus+context technique on treemaps are a uniform zoom factor
for all focus items, and an even distribution of the remaining space
to the non-focus items. To achieve these goals, we propose an elastic
model to govern the space distribution.

Our elastic model is based on an observation of spring coils. In a
system consisting of multiple spring coils of the same material that
are connected together, the springs would shrink uniformly, i.e. pro-
portionally to their lengths, when the total length is compressed. We
found the spring coils can be used to represent the non-focus items,
which need to be compressed as the focus items are enlarged.
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In the following section, we describe in detail how to make the
physical model from a dependency graph and how to solve the phys-
ical model using linear equations. After the x coordinates of vertical
focus lines and y coordinates of the horizontal focus lines are solved
independently, we have the new positions of the enclosures.

4.4.1 Physical Model

We classify the edges in the dependency graph into two types: the
solid edges, and the elastic edges. Solid edges are the edges intro-
duced by the focus enclosures, i.e. focus items, and they are solid
because their lengths have been determined by their original lengths
and the viewer-defined zoom factor. The margin edges are also con-
sidered as solid edges, in that their lengths stay unchanged with foci
enlargement. Keeping the margin size is to achieve a consistent look
from T Moriginal to T Mtrans f ormed . The rest of the edges in the de-
pendency graph are elastic edges, introduced by non-focus enclosures.
The lengths of the elastic edges cannot be straightforwardly calculated,
because they depend on the lengths of other edges.

On top of the dependency graph, we build a physical system. In
this system, the solid edges are modeled as solid sticks and the elastic
edges are modeled as spring coils with a uniform elastic modulus EM.
Naturally the nodes are the joint points of multiple sticks and springs.

With a feasible zoom factor, the physical system should be in its rest
state, i.e., the sum of all the forces acting on any joint point is zero.
Figure 5 shows an example from a segment of a dependency graph,
where ni is connected with five nodes, n1 through n5.

Fig. 5. (a) 5 edges are linked to the node ni; the arrows represent the
edge directions in the graph. (b) All the arrows point to ni, representing
the forces exerted on ni. Note that the arrows do not necessarily indicate
the positive directions of the forces.

For this example, we have the following equation to describe the
equilibrium state of the node ni, where F<n j ,ni> represents the force
that the edge linking ni and n j exerts to the point ni.

F<n1,ni> +F<n2,ni> +F<n3,ni> +F<n4,ni> +F<n5,ni> = 0

In addition, springs should follow Hooke’s Law, which specifies the
elastic force.

F = −EM× (Lnew −Loriginal)/Loriginal

In this equation, Loriginal and Lnew represent the lengths of an
elastic edge in the original state and the compressed state, respec-
tively, and F is the elastic force along the spring. When Lnew = 0,
this equation may not apply, because in this case the spring be-
comes a solid point, and the force along the spring can be larger than
−EM× (Lnew −Loriginal)/Loriginal .

4.4.2 Solving the Model by Solving Linear Equations

We use a group of linear equations to describe the above physical
model. First, we define the positions of the nodes and the forces along
the edges as variables. So for a dependency graph with |V | nodes and
|E| edges, we have in total |V |+ |E| variables. Specifically, the coor-
dinate of a node ni is denoted as Pni

. For the edge e(ni,n j), the force

that it exerts on the node n j is denoted as F<ni,n j>, and the force on ni

is denoted as F<n j ,ni>. Obviously we have F<n j ,ni> = −F<ni,n j>. The
original length of e(ni,n j) is denoted as L<ni,n j>; L<ni,n j> = Pnj

−Pni

in the original state.

For each node in the graph, ni, except for the first and last nodes
which represent the boundaries, we have the following equation:

∑
n j :LinkedWith(ni)

F<n j ,ni> = 0 (1)

And for the first and last nodes, we know the exact coordinates:

Pnf irst
= Pbegin Pnlast

= Pend (2)

For each solid edge from ni to n j, we have the following two equa-
tions for margin edges and the rest solid edges respectively:

Pnj
−Pni

= L<ni,n j> (3)

Pnj
−Pni

= L<ni,n j> ×FactorZoomIn (4)

For each elastic edge from ni to n j , we have the following equation,
where EM is a constant for all spring coils.

F<ni,n j> = −EM× (Pnj
−Pni

−L<ni,n j>)/L<ni,n j> (5)

The total number of equations is also |V |+ |E|.

With these equations, we can solve the system by a typical linear
system solver. The system can have three possible cases:

No solution. If the system has no solution, it means the viewer-defined
zoom factor is not achievable, i.e. the factor is too large.

Single unique solution. If the system has a single solution, it means
the viewer-defined zoom factor is feasible.

Multiple solutions. If the system has multiple solutions, it means the
viewer-defined zoom factor is feasible as well. It also indicates that
there are some solid edges on which the forces can be different values
in different solutions, but the resulting node coordinates are the same.
In this uncommon case, we can just choose any of the solutions.

4.4.3 Zero-Length Handling

For any elastic edge, we have to know when it will reach the critical
point, that is, when its two end points meet and hence it has a length of
zero. In this case, the elastic edge cannot be compressed any further,
otherwise the edge length would be negative. An elastic edge e may
reach its critical point when the focus items are enlarged to a certain
zoom factor. CRatee denotes this critical zoom factor for e. When e
reaches its critical point, all the edges whose CRate is smaller than
CRatee have already reached their critical points.

Because the critical zoom factors for elastic edges are determined
by the nature of the physical model, we can calculate CRate for all
elastic edges immediately after the foci are selected. Then when the
users are adjusting the zoom factor, we identify the edges that have
zero lengths, i.e., whose CRate is less than the current zoom factor,
and then replace Equation 5 with Equation 6.

Pnj
−Pni

= 0 (6)

We use the following algorithm to calculate CRates for all the
edges.
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Procedure 1 Calculate CRates

Input: The dependency Graph, G(V,E)
The type and original length for each element in E

Output: CRate for each elastic edge in E

1: Add the variable FactorZoomIn to the linear system of G, thus the
FactorZoomIn in the equation Pnj

−Pni
= Loriginal ×FactorZoomIn

is no longer a known value.
2: Set VectorEdges to be the container containing all elastic edges

whose original length is non-zero.
3: Set LastFactorZoomIn to be 1.
4: repeat
5: for each edge e(ni,n j) in VectorEdges do

6: Add an equation Pnj
−Pni

= 0 to the linear system. Solve the
system.

7: if the following three conditions are satisfied by the solution:
a. The system has one or an infinite number of solutions;
b. There is no edge in the solution whose length is negative;
c. FactorZoomIn > LastFactorZoomIn then

8: Assign FactorZoomIn to the CRate of e(ni,n j) and all other

edges in VectorEdges whose length is zero according to
the solution. Remove these edges from VectorEdges. Re-
move the equation just added. Assign FactorZoomIn to
LastFactorZoomIn. break.

9: else
10: Remove the equation just added.
11: end if
12: end for
13: until no edges are removed from the last iteration
14: Assign Positive In f inity to CRate of all the edges in VectorEdges.

The time complexity of this algorithm is O(n2) ∗Ces, where n is
the number of the foci in the treemap, and Ces is the time complexity
of solving the linear equation system. Because n is not related to the
number of the treemap items, the scalability of algorithm would not be
directly affected by the size of the dataset.

4.5 Implementation

We have implemented our algorithm in a treemap visualization sys-
tem along with a query interface that can automatically or manually
select foci. For the linear system, we implemented a stable variation
of the Gaussian elimination algorithm to solve the matrix form of the
linear system, whose complexity is O(n3). Thus the algorithm cal-

culating the CRates is O(n5), and the complexity of generating the

transformed treemap for a specified zoom factor is O(n3). In fact, be-
cause the matrix form of our system is very sparse, floating-point mul-
tiplications needed for solving these sparse matrices are much smaller
than dense matrices. Although we have not yet specifically optimized
the performance, our implemented algorithm, on a 1.7GHz laptop,
can achieve smooth treemap transformation interactively for the multi-
level treemap with thousands of leaf items and up to a hundred foci,
as the NBA dataset used in our case study and user study. The initial
calculation of the CRates takes a few seconds, and no delay can be no-
ticed after the user starts adjusting the focus zoom factor. We believe
there is still room for further performance improvement.

5 CASE STUDY

The treemap used in this case study is created based on the four con-
secutive years of NBA data from the 2001-2002 season to the 2004-
2005 season 1 . The hierarchical structure of the data is constructed by
years, conferences, divisions, teams, and individual players in a top-
down order. We use “Minutes/Game” as the size attribute to create the
treemaps. This attribute is chosen because the “Minutes/Game” statis-
tics reflect how important a player is to his team. The layout algorithm
used to create the treemap is the squarified algorithm. By using this
algorithm, items that have the largest sizes among their siblings are

1http://www.usatoday.com/sports/basketball/nba/statistics/archive.htm

placed close to the upper left corners. Thus the importance of a player
to his team can also be inferred by a player’s relative position in his
team on the treemap.

Each treemap item represents a player. We encode four attributes
by colors in the four sub-regions of each item. The attributes
are “Points/Game” (upper left), “Assists/Game” (upper right), “Re-
bounds/Game” (lower left), and ”Fouls/Game” (lower right). For the
first three attributes, the color changes from green to black to blue
continuously to represent the highest to the lowest value. In other
words, for these attributes, green is better and blue is worse. For
”Fouls/Game”, the color varies from red to black to white. Red means
worse (more fouls), and white means better (fewer fouls).

The case study is based on the team Houston Rockets. Figure 6(a)
is the original treemap that contains the foci generated by a query. The
query is to select four year records of the players who played for the
Rockets in the 2002-2003 season.

By displaying the foci in the original treemap, we can see the dis-
tribution information from the treemap context. For example, after the
2002-2003 season, half of the players left the Rockets, among which
four players played for other teams in the 2003-2004 season. Two of
them were quite important for their new teams. The treemap context
helps the viewers quickly grasp those information. If the query result
is displayed by other visualization techniques or a treemap which con-
tains the foci only, some of the information here will not be so easy to
see from the new view.

But because the sizes of the foci are not large enough, the players’
names cannot be seen. It is difficult for us to know who left the NBA
completely, and to which teams the players transferred. We also do not
know whether they became better players for the new teams because
the colors of the foci cannot be clearly seen. To address this issue, we
enlarge the foci so that both the names and colors of the foci become
quite easy to see.

The treemap in Figure 6(b) is produced by the method which en-
larges foci by changing the underlying values of the size attribute. We
refer to this method as CSA hereafter. With the enlarged foci, we can
clearly compare the performance change of transferred players. For
example, “Points/Game” of S. Francis (Steve Francis) became higher;
both “Minutes/Game” and “Points/Game” of J. Collier (Jason Collier)
became much higher. However, from (a) to (b), the treemap undergos
abrupt layout changes - all foci are clustered to the upper left corners of
their parents. We could no longer estimate the importance of a player
to its team by the item’s relative position to its parent, due to the con-
text loss regarding neighboring relations between items. And because
it is hard to map items from (b) to (a), the knowledge gained from (a)
could not be easily used on (b).

Balloon Focus, generating Figure 6(c) and (d), fixes the problem of
CSA. By maintaining the positional dependency of the treemap items,
the treemap context is well preserved. It allows the users quickly adapt
themselves to the new treemap view and migrate the already acquired
knowledge from the original treemap to the new treemap. From the
relative positions of the items to their parents, we can see that J. Collier
(Jason Collier) became more important to the Hawks in the 2003-2004
season than to the Rockets in the 2002-2003 season. S.Francis (Steve
Francis) was still the NO. 1 “Minutes/Game” player for his team after
he joined the Magic in the 2004-2005 season.

6 USER STUDY

We conducted a user study based on the NBA statistics data set de-
scribed in Section 5. The treemap configuration, i.e. size attribute,
color attributes, and color encoding, was the same as in the case study.
This study consisted of three sections, which compared Balloon Focus
(BF) with no foci enlargement, with single-focus enlargement, and
with CSA introduced in Section 5. Each of the methods in our study
provided a certain degree of contextual information related to the data.
We are interested in the difference in user performance and preference
between the methods.

Participants Twelve graduate students participated in the study.
75% majored in computer science and engineering with various re-
search focuses; 25% were from other departments. 42% were female
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(a) the original treemap (b) transformed by CSA

(c) transformed by BF (medium zoom factor) (d) transformed by BF (maximum zoom factor)

Fig. 6. Treemaps created from the NBA statistics from the 2001-2002 to the 2004-2005 seasons. (a) is the original treemap where the foci are the
multi-year records of the players who played for the Rockets in the 2002-2003 season. The foci are highlighted with yellow frames while the color of
the non-focus items are muted. The treemap in (b) is produced by increasing the value of focus items’ size attribute and regenerating the treemap;
we refer to this method as CSA. In (c) and (d), the treemaps is transformed from (a) by Balloon Focus. Mapping the items from (a) to (c) or (d) is
much easier than from (a) to (b) because Balloon Focus preserves the items’ relative positions, while CSA does not.

and 58% were male. 25% were familiar with the NBA teams and play-
ers; 75% knew a little or had no knowledge. 83% did not know about
treemaps before.

Procedure Before the test, we gave the subjects a tutorial, which
was to provide them with the basic knowledge about the treemaps,
the color encoding scheme, and how to use our treemap system to
query and adjust the focus zoom factor. We allowed the subjects to get
familiar with the interface with trial tasks. When they were performing
the tasks, the time spent on each task were recorded. After the subject
finished all tasks, a survey about the user experience was taken. In
the study, the order of methods in each section was counterbalanced
across subjects.

For each task, the subjects clicked a specific button, then the foci
were selected automatically and color-highlighted in the treemap, as
shown in Figure 6(a). Although the foci selected for each task were
the results from a real query, we hard-coded the selection of foci, in-
stead of asking the users to perform the query with the interface. This
was to save time and, more importantly, guarantee that the difficulty
of the tasks would not vary among the subjects. To adjust the focus
zoom factor, the subjects dragged a slider bar back and force.

6.1 Compare BF with No Foci Enlargement

In this section, we studied whether foci enlargement helped the sub-
jects answer questions related to the values of the item attributes. Four
tasks were performed for each method. In each task, the treemap con-
tained four foci, which represented the records of a particular player

over the four years. The question was to find the foci that has the
highest or lowest value of the specified attribute. We made sure that
the size of each foci in the original treemap has at least eight pixels
in each dimension to guarantee a moderate visibility even without en-
largement.

We analyzed the experiment results by running a single factor Anal-
ysis of Variance (ANOVA) for the dependent variables. The same
method was also used for the other sections. The measured time was
not found to have a significant difference (F(1, 22) = 0.186, p = 0.669).
The average time spent on a task was 29.2 seconds for BF, and 30.3
seconds for no foci enlargement. However, the error rate had a signif-
icant difference (F(1, 22) = 28.3, p < .0001), where the BF error rate
(16%) was much smaller than No Foci Enlargement (50%).

The survey results show that all subjects preferred to enlarge the
foci and then answer questions, even though they were able to see the
unenlarged foci and the colors. The reasons provided by the subjects
for such preference are: it was more efficient to find the answers with
larger foci; it was felt much more confident with the answers when the
foci were above a certain size. The average rate of usefulness for foci
enlargement was 8.5 out of 10 (standard deviation = 1.67).

6.2 Compare BF with Single-Focus Enlargement

The purpose of this section is to verify our hypothesis that single-focus
enlargement is insufficient for the treemap users when there are multi-
ple foci selected. The task was to count the numbers of foci in different
colors. We gave the subjects a color map which directly showed the
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mapping from colors to three classes. The users can enlarge the foci if
so desired. With the single-focus method, only a single focus can be
enlarged at one time.

Both the measured time and error rate from the two methods had a
significant difference. The measured time (F(1, 22) = 10.09, p < .005)
was 42 seconds for BF and 86 seconds for the other. The error rate
(F(1, 22) = 9.08, p < .01) was 1.25% and 13.5% for BF and the other.
The survey results show that compared with single-focus enlargement,
all subjects preferred multi-focus. The major reason was that it took
much longer to enlarge the foci one-by-one.

6.3 Compare BF with CSA

In the third section of our user study, we tested the importance of lay-
out stability and visual consistency to the users when multiple foci
were enlarged in context.

The task was to locate three target foci after the foci were enlarged.
Before the task started, the users picked three target foci of their choice
from all the foci displayed in the original treemap. Each target was
assigned a number. After the subject found the targets in the new
treemap, they tagged the targets with the numbers they originally as-
signed. The user must make sure that the correct numbers are tagged.

The average time each user spent on a task was 19.9 seconds with
BF and 41.5 seconds with CSA, and the difference was significant
(F(1, 22) = 27.7, p < 0.0001). When performing the tasks, with BF,
the subjects found the targets in the new treemap by tracking; with
CSA, however, the users had to scan the foci and match the labels.
This observation explained the difference in their performance.

In the survey, 10 out of 12 preferred BF; 2 out of 12 were neutral;
none preferred CSA. The benefits of the two methods that the users
mentioned were as follows. With BF, it was easy and efficient to track
the selected foci and it was comfortable to see the treemap and the foci
change smoothly. CSA made better use of the space by avoiding thin
and long items, and can allow a higher focus zoom factor. The average
rate of the importance of smooth layout change is 9 out of 10 (standard
deviation = 0.79).

In summary, we compared BF with the other three methods which
also provide some degrees of context. The user study results show that
enlarging foci in a treemap is very useful, single-focus enlargement
is inefficient, and the layout stability of the treemap when enlarging
the foci was highly valued by the users. Most users preferred using
Balloon Focus to highlight and explore the query results.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present a seamless multi-focus+context technique
for treemaps, called Balloon Focus, that smoothly enlarges multiple
focus items while maintaining a stable treemap layout as the context.
In our algorithm, first we define a positional dependency among the
treemap items, and use a DAG (Directed Acyclic Graph) to model the
dependency in a whole treemap. Based on the dependency graph, an
elastic model is employed to govern the placement of the focus items
while maintaining the dependency, then the non-focus items are placed
according to their dependency to the nearby foci.

The user study results showed that enlarging foci in a treemap was
very useful in reducing the error rate, multi-focus enlargement was
much more efficient than single-focus, and the layout stability of the
treemap when enlarging the foci could greatly reduce the time spent on
tracking and mapping items. Most users liked to use Balloon Focus to
explore the query results. They highly valued multi-focus enlargement
and the layout stability.

There are several directions for the future research. First, we will
study the effects of using different parameters in the elastic model, for
example, with different elastic modulus values for the elastic edges,
and consider the users’ preference in those effects. Second, we will
attempt to evaluate whether it is possible or necessary to relax some of
the positional dependency constraints so as to achieve a better zoom-
in factor while still preserving the desired features on the treemaps.
Third, we will explore the constraint-based layouts for other visual-
ization methods, such as node-and-link-style tree and graph represen-
tations.
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